Breaking criterion and characteristics for solitary waves on slopes
نویسنده
چکیده
Shoaling and breaking of solitary waves is computed on slopes 1:100 to 1:8 using an experimentally validated fully nonlinear wave model based on potential flow equations. Characteristics of waves are computed at and beyond the breaking point, and geometric self-similarities of breakers are discussed as a function of wave height and bottom slope. No wave breaks for slopes steeper than 12 . A breaking criterion is derived for milder slopes, based on values of a nondimensional slope parameter So. This criterion predicts both whether waves will break or not and which type of breaking will occur (spilling, plunging, or surging). Empirical expressions for the breaking index and for the depth and celerity at breaking are derived based on computations. All results agree well with laboratory experiments. The NSW equations fail to predict these results with sufficient accuracy at the breaking point. Pre-breaking shoaling rates follow a more complex path than previously realized. Post-breaking behaviors exhibit a rapid (non-dissipative) decay, also observed in experiments, associated with a transfer of potential energy into kinetic energy. Wave celerity decreases in this zone of rapid decay.
منابع مشابه
ISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes
Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...
متن کاملEstimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter
This paper re-examines existing wave run-up data for regular, irregular and solitary waves on smooth, impermeable plane slopes. A simple physical argument is used to derive a new wave run-up equation in terms of a dimensionless wave parameter representing the maximum, depth-integrated momentum flux in a wave as it reaches the toe of the structure slope. This parameter is a physically relevant d...
متن کاملNumerical Modeling and Experiments for Solitary Wave Shoaling and Breaking over a Sloping Beach
This research deals with the validation of fluid dynamic models, used for simulating shoaling and breaking solitary waves on slopes, based on experiments performed at the Ecole Supérieure d’Ingénieurs de Marseille’s (ESIM) laboratory. A separate paper, also presented at this conference, reports on experiments. In a first part of this work, a fully nonlinear potential flow model based on a Bound...
متن کاملApplication of Artificial Neural Network and Fuzzy Inference System in Prediction of Breaking Wave Characteristics
Wave height as well as water depth at the breaking point are two basic parameters which are necessary for studying coastal processes. In this study, the application of soft computing-based methods such as artificial neural network (ANN), fuzzy inference system (FIS), adaptive neuro fuzzy inference system (ANFIS) and semi-empirical models for prediction of these parameters are investigated. Th...
متن کاملSPH Model of Solitary Waves Shoaling on a Mild Sloping Beach
Shoaling of solitary waves on a uniform plane beach connected to a constant-depth wave tank is investigated numerically using the smoothed particle hydrodynamics (SPH) method. The characteristics of water surface elevations have been analyzed for wave shoaling. To test the validity of the numerical model, the relative wave heights, the time histories of the free surface profiles are measured at...
متن کامل